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What problems can be solved with a system of mutually  unbiased bases? How to use
symmetry properties to find a distinguished quantum measurement? How do quantum
games differ from classical games?

These issues have been addressed by Karol Życzkowski and his collaborators in three papers
spanning  ten years.  The three works  on distinguished configurations  of  quantum states
were carried out thanks to the support of the Foundation for Polish Science.

To describe a physical system in quantum theory we use the concept of a quantum
state, which is a mathematical tool that allows us to calculate the probability of obtaining a
given result  of  a measurement.  In the simplest case,  the state  is represented by a unit
vector constrained to a sphere called the Bloch sphere. A classical system, containing one bit
(binary unit) of information, can only assume values 0 or 1, which correspond to the poles of
the sphere: the north pole N, and the south pole S, respectively. Thus, the corresponding
vector  indicating  the  state  of  the  system  can  only  be  oriented  in  the  “up”  or  “down”
directions, like a tossed coin that can only fall with heads or tails upward. Another example
of  a  system  with  two  possible  states  is  an  electrical  conductor:  current  flows  in  the
conductor or not. 

In quantum theory, all superposition states are allowed: the famous Schrödinger’s
cat can be a little dead and a little alive at the same time. The states of a two-level system –
called a qubit (quantum bit) – correspond to any point on the sphere. Therefore, the radial
vector describing the state of the qubit, imagined by a pencil held by its end, assumes any
position on the sphere. Two quantum states are distinguishable when they are orthogonal,
corresponding to  different  classical  states,  so  two  pencils held  up  and  downward.  The
dimension  of  the  space  corresponds  to  the  number  of  distinguishable  measurement
outcomes and is n=2 for a coin toss (two sides of a coin) and n=6 for a dice roll (six faces of a
dice). 

The set of  n mutually distinguishable quantum states forms an orthogonal  basis.
From the viewpoint of quantum mechanics,  what is interesting are the constellations of
quantum states that define quantum measurements with special symmetry properties. To
such a class belong mutually unbiased bases (MUB), which allow one to perform a quantum
measurement with a high accuracy. It is not difficult to prove that in an n-dimensional space
there exist not more than  n+1 such bases. The complete set of MUBs for one qubit,  n=2,
consists of three bases represented by three pairs of antipodal points on the sphere, namely
such that  lie  at  two opposite poles of  that  sphere.  In the language of  the radial  vector
represented by a spinning pencil, consider 3*2=6 pencils, such that each pair pointing in two
opposite  directions  corresponds  to  a  single  base,  and  their  convex  hull  gives  a  regular
octahedron spanned by its six vertices – see Fig. 1. In geometry, such a figure has been
known since Plato, and in recent years it has also found certain applications in quantum
mechanics. 



In the 2010 article “On mutually unbiased bases” [1], the authors analyze sets of mutually
unbiased bases for higher dimensions, presenting
their classification for the cases n=3,4,5,7. 
Such constellations of states determine quantum
measurements  with  particularly  favorable
properties.  In  this  widely  cited  publication,  the
authors  also  discuss  the  most  interesting  case,
n=6, for which configurations of only three MUBs
are known. Since in this case the upper limit gives
6+1=7 bases, the determination of the maximum
number  of  unbiased  bases  in  this  dimension
remains an important open problem.

Fig. 1. Three bases consisting of two antipodal 
points on the sphere form a set of MUBs for dimension n=2 

The  article  “Iso-entangled  mutually  unbiased  bases,  symmetric  quantum
measurements and mixed-state designs” [2] deals with the issue of unbiased bases for the
case n=4, treated as a system of two qubits. The paper presents a configuration of 20 states
in this dimension with the same degree of quantum entanglement, which forms a full set of
five unbiased bases. Hence, all these states can be obtained from a particular fiducial state
by local transformations, which can facilitate their experimental implementation. The entire
system can be represented by another figure by Plato, a regular dodecahedron embedded

inside  the  Bloch  sphere.  It  is  convenient  to
decompose  it  into  five  regular  tetrahedrons.
Each  tetrahedron  is  shown  in  Fig.  2  in  a
different color, which corresponds to a single
base in four dimensions, which when reduced
to  two,  gives  four  tetrahedral  vertices
equidistant from the center of the sphere. 

The mutual unbiasedness of the bases
is made apparent by the fact that each pair of
tetrahedrons intersects symmetrically. Each of
the  5*4=20  states  that  define  the  entire
measurement  system  were  determined
analytically.  Thus,  the  authors  revealed  that
this set of 20 states forms a quantum design
with special symmetry and special properties.
The obtained results are important both from
the viewpoint of the foundations of quantum
mechanics  and  the  theory  of  quantum
information processing. 

Fig. 2. Five unbiased bases for n=4 with the same degree 

of quantum entanglement, if reduced to a single subsystem, 

form five intersecting regular tetrahedrons inscribed 

into a sphere (Figure by Jakub Czartowski)



“In the history of science there have been many prolific ideas about whose application we
could  say  very  little  at  the  time  of  their  inception,”  says  Karol  Życzkowski.  After  all,  a
significant branch of practical mathematics – the theory of probability – originated from the
analysis of multiple coin tosses and games of dice. The key problems for gambling French
officers were also interesting for Pascal: Which rules of the game are reasonable and give
both parties equal chances to win?

With the development of quantum theory, the question arises how the chances of
winning will change if instead of ordinary coins with two sides we use in the game “quantum
coins,” which apart from the states 0 = heads and 1 = tails, can also assume superposition
states corresponding to any points of the Bloch sphere. At the cross-section of quantum
mechanics, probability calculus, and game theory, a new field of science called quantum
games has recently emerged. Its goal is to study how a given game changes if players are
allowed to use quantum strategies.  The related field of  quantum finances has  a  similar
status, as it  analyzes financial  markets under the (currently  unrealistic) assumptions that
stock  market  agents  can  also  use  quantum  strategies  and  that  their  portfolios  contain
superpositions of bought and sold stocks of various companies.

Fig. 3. Small examples of sudoku in a 4x4 square:  a) classical solution based on the chess-knight motive;
b)  quantum version of  SudoQ with  16 different  states  forming 4*3=12 different  orthogonal  bases  in
dimension n=4. For legibility, quantum states are not normalized. 

In a recent article “Genuinely quantum SudoQ and its cardinality” Karol Życzkowski
and colleagues describe quantum sudoku patterns [3]. In classical sudoku, every symbol in
every row, column, and block of a square must be different. The quantum version of the
game, called SudoQ, uses arbitrary quantum states under the assumption that all states in
each  row,  column,  and  block  form  an  orthogonal  basis  -  see  Fig.  3.  The  presented
classification of such arrangements for dimension n=4 offers original schemes of quantum
measurements and may find applications in the development of artificial intelligence and
quantum machine learning.
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